scholarly journals Parameterization of Joint Frequency Distributions of Potential Temperature and Water Vapor Mixing Ratio in the Daytime Convective Boundary Layer

2004 ◽  
Vol 61 (7) ◽  
pp. 813-828 ◽  
Author(s):  
Larry K. Berg ◽  
Roland B. Stull
2019 ◽  
Vol 77 (3) ◽  
pp. 1081-1100 ◽  
Author(s):  
Neil P. Lareau

Abstract Doppler and Raman lidar observations of vertical velocity and water vapor mixing ratio are used to probe the physics and statistics of subcloud and cloud-base latent heat fluxes during cumulus convection at the ARM Southern Great Plains (SGP) site in Oklahoma, United States. The statistical results show that latent heat fluxes increase with height from the surface up to ~0.8Zi (where Zi is the convective boundary layer depth) and then decrease to ~0 at Zi. Peak fluxes aloft exceeding 500 W m−2 are associated with periods of increased cumulus cloud cover and stronger jumps in the mean humidity profile. These entrainment fluxes are much larger than the surface fluxes, indicating substantial drying over the 0–0.8Zi layer accompanied by moistening aloft as the CBL deepens over the diurnal cycle. We also show that the boundary layer humidity budget is approximately closed by computing the flux divergence across the 0–0.8Zi layer. Composite subcloud velocity and water vapor anomalies show that clouds are linked to coherent updraft and moisture plumes. The moisture anomaly is Gaussian, most pronounced above 0.8Zi and systematically wider than the velocity anomaly, which has a narrow central updraft flanked by downdrafts. This size and shape disparity results in downdrafts characterized by a high water vapor mixing ratio and thus a broad joint probability density function (JPDF) of velocity and mixing ratio in the upper CBL. We also show that cloud-base latent heat fluxes can be both positive and negative and that the instantaneous positive fluxes can be very large (~10 000 W m−2). However, since cloud fraction tends to be small, the net impact of these fluxes remains modest.


2007 ◽  
Vol 135 (7) ◽  
pp. 2417-2442 ◽  
Author(s):  
Conrad L. Ziegler ◽  
Michael S. Buban ◽  
Erik N. Rasmussen

Abstract A new Lagrangian analysis technique is developed to assimilate in situ boundary layer measurements using multi-Doppler-derived wind fields, providing output fields of water vapor mixing ratio, potential temperature, and virtual potential temperature from which the lifting condensation level (LCL) and relative humidity (RH) fields are derived. The Lagrangian analysis employs a continuity principle to bidirectionally distribute observed values of conservative variables with the 3D, evolving boundary layer airflow, followed by temporal and spatial interpolation to an analysis grid. Cloud is inferred at any grid point whose height z > zLCL or equivalently where RH ≥ 100%. Lagrangian analysis of the cumulus field is placed in the context of gridded analyses of visible satellite imagery and photogrammetric cloud-base area analyses. Brief illustrative examples of boundary layer morphology derived with the Lagrangian analysis are presented based on data collected during the International H2O Project (IHOP): 1) a dryline on 22 May 2002; 2) a cold-frontal–dryline “triple point” intersection on 24 May 2002. The Lagrangian analysis preserves the sharp thermal gradients across the cold front and drylines and reveals the presence of undulations and plumes of water vapor mixing ratio and virtual potential temperature associated with deep penetrative updraft cells and convective roll circulations. Derived cloud fields are consistent with satellite-inferred cloud cover and cloud-base locations.


2018 ◽  
Vol 75 (7) ◽  
pp. 2317-2336 ◽  
Author(s):  
Bowen Zhou ◽  
Shiwei Sun ◽  
Kai Yao ◽  
Kefeng Zhu

Abstract Turbulent mixing in the daytime convective boundary layer (CBL) is carried out by organized nonlocal updrafts and smaller local eddies. In the upper mixed layer of the CBL, heat fluxes associated with nonlocal updrafts are directed up the local potential temperature gradient. To reproduce such countergradient behavior in parameterizations, a class of planetary boundary layer schemes adopts a countergradient correction term in addition to the classic downgradient eddy-diffusion term. Such schemes are popular because of their simple formulation and effective performance. This study reexamines those schemes to investigate the physical representations of the gradient and countergradient (GCG) terms, and to rebut the often-implied association of the GCG terms with heat fluxes due to local and nonlocal (LNL) eddies. To do so, large-eddy simulations (LESs) of six idealized CBL cases are performed. The GCG fluxes are computed a priori with horizontally averaged LES data, while the LNL fluxes are diagnosed through conditional sampling and Fourier decomposition of the LES flow field. It is found that in the upper mixed layer, the gradient term predicts downward fluxes in the presence of positive mean potential temperature gradient but is compensated by the upward countergradient correction flux, which is larger than the total heat flux. However, neither downward local fluxes nor larger-than-total nonlocal fluxes are diagnosed from LES. The difference reflects reduced turbulence efficiency for GCG fluxes and, in terms of physics, conceptual deficiencies in the GCG representation of CBL heat fluxes.


2017 ◽  
Vol 37 (2) ◽  
pp. 0201003
Author(s):  
洪光烈 Hong Guanglie ◽  
李嘉唐 Li Jiatang ◽  
孔 伟 Kong Wei ◽  
葛 烨 Ge Ye ◽  
舒 嵘 Shu Rong

2020 ◽  
Vol 77 (2) ◽  
pp. 435-442
Author(s):  
John Thuburn ◽  
Georgios A. Efstathiou

Abstract We hypothesize that the convective atmospheric boundary layer is marginally stable when the damping effects of turbulence are taken into account. If the effects of turbulence are modeled as an eddy viscosity and diffusivity, then an idealized analysis based on the hypothesis predicts a well-known scaling for the magnitude of the eddy viscosity and diffusivity. It also predicts that the marginally stable modes should have vertical and horizontal scales comparable to the boundary layer depth. A more quantitative numerical linear stability analysis is presented for a realistic convective boundary layer potential temperature profile and is found to support the hypothesis.


2012 ◽  
Vol 12 (19) ◽  
pp. 9335-9353 ◽  
Author(s):  
H. G. Ouwersloot ◽  
J. Vilà-Guerau de Arellano ◽  
A. C. Nölscher ◽  
M. C. Krol ◽  
L. N. Ganzeveld ◽  
...  

Abstract. We studied the atmospheric boundary layer (ABL) dynamics and the impact on atmospheric chemistry during the HUMPPA-COPEC-2010 campaign. We used vertical profiles of potential temperature and specific moisture, obtained from 132 radio soundings, to determine the main boundary layer characteristics during the campaign. We propose a classification according to several main ABL prototypes. Further, we performed a case study of a single day, focusing on the convective boundary layer, to analyse the influence of the dynamics on the chemical evolution of the ABL. We used a mixed layer model, initialized and constrained by observations. In particular, we investigated the role of large scale atmospheric dynamics (subsidence and advection) on the ABL development and the evolution of chemical species concentrations. We find that, if the large scale forcings are taken into account, the ABL dynamics are represented satisfactorily. Subsequently, we studied the impact of mixing with a residual layer aloft during the morning transition on atmospheric chemistry. The time evolution of NOx and O3 concentrations, including morning peaks, can be explained and accurately simulated by incorporating the transition of the ABL dynamics from night to day. We demonstrate the importance of the ABL height evolution for the representation of atmospheric chemistry. Our findings underscore the need to couple the dynamics and chemistry at different spatial scales (from turbulence to mesoscale) in chemistry-transport models and in the interpretation of observational data.


2015 ◽  
Vol 15 (5) ◽  
pp. 2867-2881 ◽  
Author(s):  
E. Hammann ◽  
A. Behrendt ◽  
F. Le Mounier ◽  
V. Wulfmeyer

Abstract. The temperature measurements of the rotational Raman lidar of the University of Hohenheim (UHOH RRL) during the High Definition of Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observation Prototype Experiment (HOPE) in April and May 2013 are discussed. The lidar consists of a frequency-tripled Nd:YAG laser at 355 nm with 10 W average power at 50 Hz, a two-mirror scanner, a 40 cm receiving telescope, and a highly efficient polychromator with cascading interference filters for separating four signals: the elastic backscatter signal, two rotational Raman signals with different temperature dependence, and the vibrational Raman signal of water vapor. The main measurement variable of the UHOH RRL is temperature. For the HOPE campaign, the lidar receiver was optimized for high and low background levels, with a novel switch for the passband of the second rotational Raman channel. The instrument delivers atmospheric profiles of water vapor mixing ratio as well as particle backscatter coefficient and particle extinction coefficient as further products. As examples for the measurement performance, measurements of the temperature gradient and water vapor mixing ratio revealing the development of the atmospheric boundary layer within 25 h are presented. As expected from simulations, a reduction of the measurement uncertainty of 70% during nighttime was achieved with the new low-background setting. A two-mirror scanner allows for measurements in different directions. When pointing the scanner to low elevation, measurements close to the ground become possible which are otherwise impossible due to the non-total overlap of laser beam and receiving telescope field of view in the near range. An example of a low-level temperature measurement is presented which resolves the temperature gradient at the top of the stable nighttime boundary layer 100 m above the ground.


2013 ◽  
Vol 13 (12) ◽  
pp. 31527-31562 ◽  
Author(s):  
E. Blay-Carreras ◽  
D. Pino ◽  
A. Van de Boer ◽  
O. De Coster ◽  
C. Darbieu ◽  
...  

Abstract. Observations, mixed-layer theory and the Dutch Large-Eddy Simulation model (DALES) are used to analyze the dynamics of the boundary layer during an intensive operational period (1 July 2011) of the Boundary Layer Late Afternoon and Sunset Turbulence campaign. Continuous measurements made by remote sensing and in situ instruments in combination with radio soundings, and measurements done by remotely piloted airplane systems and two aircrafts probed the vertical structure and the temporal evolution of the boundary layer during the campaign. The initial vertical profiles of potential temperature, specific humidity and wind, and the temporal evolution of the surface heat and moisture fluxes prescribed in the numerical simulations are inspired by some of these observations. The research focuses on the role played by the residual layer during the morning transition and by the large-scale subsidence on the evolution of the boundary layer. By using DALES, we show the importance of the dynamics of the boundary layer during the previous night in the development of the boundary layer at the morning. DALES numerical experiments including the residual layer are capable to model the observed sudden increase of the boundary-layer depth during the morning transition and the subsequent evolution of the boundary layer. The simulation shows a large increase of the entrainment buoyancy heat flux when the residual layer is incorporated into the mixed layer. We also examine how the inclusion of the residual layer above a shallow convective boundary layer modifies the turbulent kinetic energy budget. Large-scale subsidence mainly acts when the boundary layer is fully developed and, for the studied day, it is necessary to be considered to reproduce the afternoon observations. Additionally, we investigate how carbon dioxide (CO2) mixing ratio stored the previous night in the residual layer plays a fundamental role in the evolution of the CO2 mixing ratio during the following day.


2019 ◽  
Vol 36 (5) ◽  
pp. 761-779
Author(s):  
Stephen D. Nicholls ◽  
Karen I. Mohr

AbstractThe intense surface heating over arid land surfaces produces dry well-mixed layers (WML) via dry convection. These layers are characterized by nearly constant potential temperature and low, nearly constant water vapor mixing ratio. To further the study of dry WMLs, we created a detection methodology and supporting software to automate the identification and characterization of dry WMLs from multiple data sources including rawinsondes, remote sensing platforms, and model products. The software is a modular code written in Python, an open-source language. Radiosondes from a network of synoptic stations in North Africa were used to develop and test the WML detection process. The detection involves an iterative decision tree that ingests a vertical profile from an input data file, performs a quality check for sufficient data density, and then searches upward through the column for successive points where the simultaneous changes in water vapor mixing ratio and potential temperature are less than the specified maxima. If points in the vertical profile meet the dry WML identification criteria, statistics are generated detailing the characteristics of each layer in the profile. At the end of the vertical profile analysis, there is an option to plot analyzed profiles in a variety of file formats. Initial results show that the detection methodology can be successfully applied across a wide variety of input data and North African environments and for all seasons. It is sensitive enough to identify dry WMLs from other types of isentropic phenomena such as subsidence layers and distinguish the current day’s dry WML from previous days.


Sign in / Sign up

Export Citation Format

Share Document